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Abstract

Employing Biot’s theory of wave propagation in liquid saturated porous media, axially symmetric vibrations of fluid-

filled and empty poroelastic circular cylindrical shells of infinite extent are investigated for different wall-thicknesses. Let

the poroelastic cylindrical shells are homogeneous and isotropic. The frequency equation of axially symmetric vibrations

each for a pervious and an impervious surface is derived. Particular cases when the fluid is absent are considered both for

pervious and impervious surfaces. The frequency equation of axially symmetric vibrations propagating in a fluid-filled and

an empty poroelastic bore, each for a pervious and an impervious surface is derived as a limiting case when ratio of

thickness to inner radius tends to infinity as the outer radius tends to infinity. Cut-off frequencies when the wavenumber is

zero are obtained for fluid-filled and empty poroelastic cylindrical shells both for pervious and impervious surfaces. When

the wavenumber is zero, the frequency equation of axially symmetric shear vibrations is independent of nature of surface,

i.e., pervious or impervious and also it is independent of presence of fluid in the poroelastic cylindrical shell. Non-

dimensional phase velocity for propagating modes is computed as a function of ratio of thickness to wavelength in absence

of dissipation. These results are presented graphically for two types of poroelastic materials and then discussed. In general,

the phase velocity of an empty poroelastic cylindrical shell is higher than that of a fluid-filled poroelastic cylindrical shell.

The phase velocity of a fluid-filled bore is higher than that of an empty poroelastic bore. Previous results are shown as a

special case of present investigation. Results of purely elastic solid are obtained.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Gazis [1,2] discussed the propagation of free harmonic waves along a hollow elastic circular cylinder of
infinite extent and presented numerical results. Kumar [3] studied the axially symmetric vibrations of fluid-
filled and empty elastic circular cylindrical shells of various wall-thicknesses. Employing Biot’s theory [4],
Tajuddin and Sarma [5] studied the torsional vibrations of poroelastic cylinders. Sharma and Gogna [6] solved
the problem of elastic wave propagation in a cylindrical bore in a poroelastic solid and derived the frequency
equations for empty and fluid-filled bores. Cui et al. [7] and Abousleiman and Cui [8] presented poroelastic
solutions in an inclined borehole and transversely isotropic well-bore cylinders. Malla Reddy and Tajuddin [9]
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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studied the plane-strain vibrations of thick-walled hollow poroelastic cylinders. Wisse et al. [10,11] presented
the experimental results of guided wave modes in porous cylinders and extended the classical theory of wave
propagation in elastic cylinders to poroelastic mandrel modes. Kanj et al. [12] presented poromechanics of
anisotropic hollow cylinders. Kanj and Abousleiman [13] presented poromechanical solutions of Lamé
problem and discussed different cases in detail. Chao et al. [14] studied the shock-induced borehole waves in
porous formations. Vashishth and Khurana [15] presented the solutions of elastic wave propagation along a
cylindrical borehole in an anisotropic poroelastic solid and derived frequency equations for empty and fluid-
filled boreholes. Farhang et al. [16] investigated the wave propagation in transversely isotropic cylinders.
Tajuddin and Ahmed Shah [17,18] studied the circumferential waves and torsional vibrations of infinite
hollow poroelastic cylinders in presence of dissipation.

In the present analysis, the axially symmetric vibrations of fluid-filled and empty poroelastic circular
cylindrical shells of infinite extent are investigated employing Biot’s [4] theory. Biot’s model consists of an
elastic matrix permeated by a network of interconnected spaces saturated with liquid. The frequency equation
of such vibrations is derived each for a pervious surface and an impervious surface. The frequency equation of
axially symmetric vibrations propagating in a fluid-filled and an empty poroelastic bore is obtained as a
limiting case, when the ratio of thickness to inner radius approaches to infinity as the outer radius tends to
infinity with finite inner radius. These frequency equations are derived for both pervious and impervious
surfaces. Cut-off frequencies when the wavenumber is zero are obtained for fluid-filled and empty poroelastic
cylindrical shells, both for pervious and impervious surfaces. For zero wavenumber, the frequency equation of
axially symmetric shear vibrations is independent of nature of surface as well as presence of fluid in the
poroelastic shell. This frequency equation is discussed for limiting values of ratio of thickness to inner radius
h/r1, when these values are too small and too large. When h/r1-0, it gives the theoretical frequencies of thin
poroelastic cylindrical shell and when h/r1-N for r1-0, the modes of a poroelastic solid cylinder are
obtained. Non-dimensional phase velocity for propagating modes is computed in absence of dissipation for
fluid-filled and empty poroelastic cylindrical shells and poroelastic bore each for a pervious and an impervious
surface. The cut-off frequency as a function of h/r1 is determined. The results are presented graphically for two
types of poroelastic materials and then discussed. Results of some previous works are shown as a particular
case of the present investigation. By ignoring the liquid effects, and after rearrangement of terms, results of
purely elastic solid are shown as a particular case considered by Kumar [3].

2. Governing equations

The equations of motion of a homogeneous, isotropic poroelastic solid [4] in presence of dissipation b are

Nr2~uþ ðAþNÞreþQr 2¼
q2

qt2
ðr11~uþ r12 ~UÞ þ b

q
qt
ð~u� ~UÞ,

Qreþ Rr 2¼
q2

qt2
ðr12~uþ r22 ~UÞ � b

q
qt
ð~u� ~UÞ, (1)

where r2 is the Laplacian, u ¼ (u, v,w) and U ¼ (U,V,W) are displacements of solid and liquid, respectively, e

and A are the dilatations of solid and liquid; A, N, Q, R are all poroelastic constants and rij (i, j ¼ 1, 2) are the
mass coefficients following Biot [4]. The poroelastic constants A, N correspond to familiar Lamé constants in
purely elastic solid. The coefficient N represents the shear modulus of the solid. The coefficient R is a measure
of the pressure required on the liquid to force a certain amount of the liquid into the aggregate while total
volume remains constant. The coefficient Q represents the coupling between the volume change of the solid to
that of liquid.

The equation of motion for a homogeneous, isotropic, inviscid elastic fluid is

r2F ¼
1

V 2
f

q2F
qt2

, (2)

where F is displacement potential function and Vf is the velocity of sound in the fluid. The displacement of
fluid is uf ¼ (uf, vf,wf).
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The stresses sij and the liquid pressure s of the poroelastic solid are

sij ¼ 2Neij þ ðAeþQ 2Þdij ði; j ¼ 1; 2; 3Þ,

s ¼ Qeþ R 2 , (3)

where dij is the well-known Kronecker delta function.
The fluid pressure Pf is given by

Pf ¼ �rf

q2F
qt2

. (4)

In Eq. (4), rf is the density of the fluid.

3. Solution of the problem

Let (r, y, z) be the cylindrical polar coordinates. Consider a homogeneous, isotropic, infinite poroelastic
cylindrical shell filled with inviscid elastic fluid. Let the inner and outer radii be r1 and r2 respectively so that
the thickness of poroelastic shell is h [ ¼ (r2�r1)40]. The axis of the poroelastic shell is in the direction of z-
axis. Then for axially symmetric vibrations, the displacement of solid u ¼ (u, 0,w) which can be readily be
evaluated from field Eq. (1) is
(a)
 when |kV1|oo,

u ¼ C1
q
qr

J0ða1rÞ þ C2
q
qr

Y 0ða1rÞ þ C3
q
qr

J0ða2rÞ þ C4
q
qr

Y 0ða2rÞ

�

þA1½�ikJ1ða3rÞ� þ B1½�ikY 1ða3rÞ�
�
eiðkzþotÞ,

w ¼ C1½ikJ0ða1rÞ� þ C2½ikY 0ða1rÞ� þ C3½ikJ0ða2rÞ� þ C4½ikY 0ða2rÞ�

�

þA1
q
qr

J1ða3rÞ þ
1

r
J1ða3rÞ

� �
þ B1

q
qr

Y 1ða3rÞ þ
1

r
Y 1ða3rÞ

� ��
eiðkzþotÞ. (5)

In Eq. (5), o is the frequency of wave, k is wavenumber, C1, C2, C3, C4, A1, and B1 are constants, J0(x),
Y0(x) are Bessel functions of first and second kind each of order zero, J1(x), Y1(x) are Bessel functions of
first and second kind each or order one. Here i is complex unity or i2 ¼ �1 and

a21 ¼
o2

V2
1

� k2; a22 ¼
o2

V 2
2

� k2; a23 ¼
o2

V 2
3

� k2, (6)

where Vi (i ¼ 1, 2) are dilatational wave velocities of first and second kind, respectively, V3 is shear wave
velocity.
The displacement of fluid column uf ¼ (uf, 0,wf) for axially symmetric vibrations is

uf ¼ Af

q
qr

J0ðaf rÞ eiðkzþotÞ; vf ¼ 0,

wf ¼ Af ikJ0ðaf rÞ eiðkzþotÞ, (7)

where Af is constant and

a2f ¼
o2

V 2
f

� k2. (8)

With the help of displacement potential function, fluid pressure is given by

Pf ¼ Af o2rf J0ðaf rÞ eiðkzþotÞ; when jkVf joo. (9)
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When |kV3|ooo|kV1|:
(b)

In this case, the solid displacement is obtained from Eq. (5) after replacing Bessel functions J1(a1r),
Y1(a1r), J1(a2r), Y1(a2r) by modified Bessel functions I1(a1r), K1(a1r), I1(a2r), K1(a2r), respectively.
Similarly, the Bessel functions of second order are changed accordingly keeping J1(a3r), Y1(a3r) and
J2(a3r), Y2(a3r) same.
(c)
 When oo|kV1|:
In this case, the solid displacement is obtained from Eq. (5) after replacing Bessel functions of first and
second kind by modified Bessel functions of first and second kind, respectively.
Substituting the displacement function u and w from Eq. (5), fluid pressure from Eq. (9), into Eq. (3)
together with Eq. (7), the relevant displacement, liquid pressure and stresses are

srr þ sþ Pf ¼ ½C1M11ðrÞ þ C2M12ðrÞ þ C3M13ðrÞ þ C4M14ðrÞ

þ A1M15ðrÞ þ B1M16ðrÞ þ Af M17ðrÞ� e
iðkzþotÞ, (10)

srz ¼ ½C1M21ðrÞ þ C2M22ðrÞ þ C3M23ðrÞ þ C4M24ðrÞ

þ A1M25ðrÞ þ B1M26ðrÞ� e
iðkzþotÞ, (11)

s ¼ ½C1M31ðrÞ þ C2M32ðrÞ þ C3M33ðrÞ þ C4M34ðrÞ� e
iðkzþotÞ, (12)

qs

qr
¼ ½C1N31ðrÞ þ C2N32ðrÞ þ C3N33ðrÞ þ C4N34ðrÞ� e

iðkzþotÞ, (13)

u� uf ¼ ½C1M41ðrÞ þ C2M42ðrÞ þ C3M43ðrÞ þ C4M44ðrÞ

þ A1M45ðrÞ þ B1M46ðrÞ þ Af M47ðrÞ� e
iðkzþotÞ, (14)

srr þ s ¼ ½C1M51ðrÞ þ C2M52ðrÞ þ C3M53ðrÞ þ C4M54ðrÞ þ A1M55ðrÞ þ B1M56ðrÞ� e
iðkzþotÞ, (15)

where C1, C2, C3, C4, A1, B1, Af are all constants and the coefficients Mij(r), Nij(r) are

M11ðrÞ ¼ f½ðQþ RÞd21 � ðAþQÞ�k2
þ ½ðQþ RÞd21 � ðPþQÞ�a21gJ0ða1rÞ þ

2Na1
r

J1ða1rÞ,

M12ðrÞ ¼ f½ðQþ RÞd21 � ðAþQÞ�k2
þ ½ðQþ RÞd21 � ðPþQÞ�a21gY 0ða1rÞ þ

2Na1
r

Y 1ða1rÞ,

M13ðrÞ ¼ f½ðQþ RÞd22 � ðAþQÞ�k2
þ ½ðQþ RÞd22 � ðPþQÞ�a22gJ0ða2rÞ þ

2Na2
r

J1ða2rÞ,

M14ðrÞ ¼ f½ðQþ RÞd22 � ðAþQÞ�k2
þ ½ðQþ RÞd22 � ðPþQÞ�a22gY 0ða2rÞ þ

2Na2
r

Y 1ða2rÞ,

M15ðrÞ ¼ �2ikNa3J0ða3rÞ þ
2ikN

r
J1ða3rÞ,

M16ðrÞ ¼ �2ikNa3Y 0ða3rÞ þ
2ikN

r
Y 1ða3rÞ,

M17ðrÞ ¼ o2rf J0ðaf rÞ; M21ðrÞ ¼ �2ikNa1J1ða1rÞ,

M22ðrÞ ¼ �2ikNa1Y 1ða1rÞ,

M23ðrÞ ¼ �2ikNa2J1ða2rÞ; M24ðrÞ ¼ �2ikNa2Y 1ða2rÞ,

M25ðrÞ ¼ Nðk2
� a23ÞJ1ða3rÞ; M26ðrÞ ¼ Nðk2

� a23ÞY 1ða3rÞ; M27ðrÞ ¼ 0,
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M31ðrÞ ¼ ðRd21 �QÞða21 þ k2
ÞJ0ða1rÞ; M32ðrÞ ¼ ðRd21 �QÞða21 þ k2

ÞY 0ða1rÞ,

M33ðrÞ ¼ ðRd22 �QÞða22 þ k2
ÞJ0ða2rÞ; M34ðrÞ ¼ ðRd22 �QÞða22 þ k2

ÞY 0ða2rÞ,

M35ðrÞ ¼ 0; M36ðrÞ ¼ 0; M37ðrÞ ¼ 0; M41ðrÞ ¼ �a1J1ða1rÞ,

M42ðrÞ ¼ �a1Y 1ða1rÞ,

M43ðrÞ ¼ �a2J1ða2rÞ; M44ðrÞ ¼ �a2Y 1ða2rÞ; M45ðrÞ ¼ �ikJ1ða3rÞ,

M46ðrÞ ¼ �ikY 1ða3rÞ; M47ðrÞ ¼ af J1ðaf rÞ,

M51ðrÞ ¼M11ðrÞ; M52ðrÞ ¼M12ðrÞ; M53ðrÞ ¼M13ðrÞ; M54ðrÞ ¼M14ðrÞ,

M55ðrÞ ¼M15ðrÞ; M56ðrÞ ¼M16ðrÞ; M57ðrÞ ¼ 0,

M6jðrÞ ¼M2jðrÞ; M7jðrÞ ¼M3jðrÞ; j ¼ 1; 2; 3; 4; 5; 6; 7,

N31ðrÞ ¼ ðRd21 �QÞða31 þ k2a1ÞJ1ða1rÞ; N32ðrÞ ¼ ðRd21 �QÞða31 þ k2a1ÞY 1ða1rÞ,

N33ðrÞ ¼ ðRd22 �QÞða32 þ k2a2ÞJ1ða2rÞ; N34ðrÞ ¼ ðRd22 �QÞða32 þ k2a2ÞY 1ða2rÞ,

N35ðrÞ ¼ 0; N36ðrÞ ¼ 0; N37ðrÞ ¼ 0. (16)

In Eq. (16), d21 and d22 are

d2i ¼
1

ðRK12 �QK22Þ
½ðRK11 �QK12Þ � V�2i ðPR�Q2Þ� ði ¼ 1; 2Þ, (17)

where P ¼ A+2N and

K11 ¼ r11 �
ib

o
; K12 ¼ r12 þ

ib

o
; K22 ¼ r22 �

ib

o
. (18)

4. Frequency equation

The outer surface of the poroelastic cylindrical shell is assumed to be free from stress. At the interface of
solid and fluid, the radial displacement is continuous. Thus, the boundary conditions for a fluid-filled
poroelastic circular cylindrical shell, in case of a pervious surface are

srr þ sþ Pf ¼ 0; srz ¼ 0; s ¼ 0; u� uf ¼ 0; at r ¼ r1,

srr þ s ¼ 0; srz ¼ 0; s ¼ 0; at r ¼ r2. (19)

The boundary conditions for a fluid-filled poroelastic circular cylindrical shell, in case of an impervious surface
are

srr þ sþ Pf ¼ 0; srz ¼ 0;
qs

qr
¼ 0; u� uf ¼ 0; at r ¼ r1,

srr þ s ¼ 0; srz ¼ 0;
qs

qr
¼ 0; at r ¼ r2. (20)

Substitution of Eqs. (10)–(12), (14) and (15) into Eq. (19) result in a system of seven homogeneous algebraic
equations in seven constants C1, C2, C3, C4, A1, B1 and Af. For a non-trivial solution, the determinant of the
coefficients must vanish. By eliminating these constants, the frequency equation of axially symmetric
vibrations of a fluid-filled poroelastic circular cylindrical shell in case of a pervious surface is

jAijj ¼ 0; i; j ¼ 1; 2; . . . ; 7. (21)
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In Eq. (21), the elements Aij are

Aij ¼Mijðr1Þ; i ¼ 1; 2; 3; 4 and j ¼ 1; 2; 3; 4; 5; 6; 7,

Aij ¼Mijðr2Þ; i ¼ 5; 6; 7 and j ¼ 1; 2; 3; 4; 5; 6; 7, (22)

where Mij(r) are defined in Eq. (16).
Arguing on similar lines, Eqs. (10), (11), (13)–(15) together with Eq. (20) yield the frequency equation of

axially symmetric vibrations of a fluid-filled poroelastic circular cylindrical shell of infinite extent in case of an
impervious surface to be

jBijj ¼ 0; i; j ¼ 1; 2; . . . ; 7, (23)

where the elements Bij are

Bij ¼ Aij ; i ¼ 1; 2; 4; 5; 6 and j ¼ 1; 2; 3; 4; 5; 6; 7,

B3j ¼ N3jðr1Þ; j ¼ 1; 2; 3; 4; 5; 6; 7,

B7j ¼ N3jðr2Þ; j ¼ 1; 2; 3; 4; 5; 6; 7, (24)

where Mij(r) and Nij(r) are defined in Eq. (16).
By eliminating liquid effects from frequency equation of pervious surface Eq. (21), that is, setting b-0,

r12-0, r22-0, (A�Q2/R)-l, N-m, Q-0 and R-0 the results of purely elastic solid are obtained as a
special case considered by Kumar [3]. The frequency equation of an impervious surface Eq. (23) has no
counterpart in purely elastic solid.

4.1. Frequency equation for an empty poroelastic cylindrical shell

When the fluid density is zero, that is, rf ¼ 0 the fluid-filled poroelastic cylindrical shell will become an
empty poroelastic cylindrical shell. Thus, the frequency equation of pervious surface Eq. (21) reduce to

jAijj ¼ 0; i ¼ 1; 2; 3; 5; 6; 7 and j ¼ 1; 2; 3; 4; 5; 6, (25)

where the elements Aij are defined in Eq. (22) for rf ¼ 0.
Eq. (25) is the frequency equation of axially symmetric vibrations of an empty poroelastic cylindrical shell in

case of a pervious surface.
Similarly, the frequency equation of axially symmetric vibrations of an empty poroelastic cylindrical shell

for an impervious surface is

jBijj ¼ 0; i ¼ 1; 2; 3; 5; 6; 7 and j ¼ 1; 2; 3; 4; 5; 6. (26)

In Eq. (26), the elements Bij are defined in Eq. (24) for rf ¼ 0.

4.2. Cut-off frequencies

The frequencies obtained by equating wavenumber to zero are referred to as the cut-off frequencies. Thus
for k ¼ 0, the frequency equation of pervious surface Eq. (21) reduce to the product of two determinants as

D1D2 ¼ 0, (27)

where D1 and D2 are

D1 ¼

A11 A12 A13 A14 A17

A31 A32 A33 A34 0

A41 A42 A43 A44 A47

A51 A52 A53 A54 0

A71 A72 A73 A74 0

2
6666664

3
7777775
; D2 ¼

A25 A26

A65 A66

" #
. (28)

The elements Aij of D1 and D2 are defined in Eq. (22) are now evaluated for k ¼ 0. From Eq. (27) it is clear
that either D1 ¼ 0 or D2 ¼ 0 and these two equations give the cut-off frequencies of axially symmetric
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vibrations. The frequency equation

D1 ¼ 0, (29)

gives the cut-off frequencies of axially symmetric vibrations of fluid-filled poroelastic cylindrical shells for a
pervious surface while the frequency equation

D2 ¼ 0, (30)

does not depend on fluid parameters, and it give the cut-off frequencies of axially symmetric shear vibrations
which are independent of presence of fluid in the poroelastic cylindrical shell.

Similarly, the frequency equation of an impervious surface Eq. (23), when k ¼ 0 is reduced to the product of
two determinants

D3D4 ¼ 0, (31)

where D3 and D4 are

D3 ¼

B11 B12 B13 B14 B17

B31 B32 B33 B34 0

B41 B42 B43 B44 B47

B51 B52 B53 B54 0

B71 B72 B73 B74 0

2
6666664

3
7777775
; D4 ¼

B25 B26

B65 B66

" #
. (32)

The elements Bij appearing in D3 and D4 are defined in Eq. (24) are now evaluated for k ¼ 0. From Eq. (31) it
is clear that either D3 ¼ 0 or D4 ¼ 0. The equation

D3 ¼ 0, (33)

corresponds to the cut-off frequencies of axially symmetric vibrations of a fluid-filled poroelastic cylindrical
shell in case of an impervious surface, while the equation

D4 ¼ 0, (34)

yield the cut-off frequencies independent of presence of fluid. Also it is seen that Eqs. (30) and (34) are same by
virtue of Eq. (24). Hence Eq. (30) is independent of nature of surface, that is, pervious or impervious surface.
Therefore, the cut-off frequencies given by Eq. (30) are independent of presence of fluid in the poroelastic
cylindrical shell and nature of surface. By using recurrence relations for Bessel functions [19], Eq. (30) is
simplified to

J 00ða3r1ÞY
0
0ða3r2Þ � J 00ða3r2ÞY

0
0ða3r1Þ ¼ 0, (35)

where a3 is defined in Eq. (6) for k ¼ 0.
Eq. (35) is the frequency equation of axially symmetric shear vibrations. It is same for fluid-filled and empty

poroelastic cylindrical shells as well as for pervious and impervious surfaces. By eliminating liquid effects from
Eq. (35), the results of purely elastic solid discussed by Gazis [1] are obtained as a special case. The frequency
Eq. (35) is discussed for limiting values of h/r1, when these values are too small and too large.
(a)
 For thin poroelastic cylindrical shell
When h=r1 � 1, under the verifiable assumption of non-zero a3h it is seen that a3r1c1 and a3r2c1. Using
well-known Hankel–Kirchhoff asymptotic approximations for Bessel functions [19],

J 00ðxÞ �

ffiffiffiffiffiffi
2

px

r
� sin x�

p
4

� �
�

3

8x
cos x�

3p
4

	 
� �
,

Y 00ðxÞ �

ffiffiffiffiffiffi
2

px

r
cos x�

p
4

� �
�

3

8x
sin x�

p
4

� �� �
,
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the frequency equation of axially symmetric shear vibrations Eq. (35) is reduced to

sinða3hÞ �
3a3h

8a23r1r2
cosða3hÞ � 0. (36)

Eq. (36) is the frequency equation of axially symmetric shear vibrations of a thin poroelastic cylindrical
shell. When a3r1-N, a3r2-N Eq. (36) is reduced to

sinða3hÞ ¼ 0 ) a3h ¼ pq; q ¼ 1; 2; 3; . . .

so that

o ¼
qpV3

h
; q ¼ 1; 2; 3; . . . (37)

which are the theoretical frequencies of poroelastic plate of thickness h. Moreover, near the origin h/
r1 ¼ 0, and assuming

a3h ¼ qpþ Zn; Zn � 1, (38)

then using the frequency equation of axially symmetric shear vibrations of thin poroelastic cylindrical
shell, that is, Eq. (36) yields

Zn ¼
3

8qp
h

r1

	 
2

; q ¼ 1; 2; 3; . . . (39)

On substituting Eq. (39) into Eq. (38) and using Eq. (37), we can write

o ¼
V3qp

h
1þ

3

8ðqpÞ2
h

r1

	 
2
" #

; q ¼ 1; 2; 3; . . . (40)

which are the theoretical frequencies of axially symmetric shear vibrations of a poroelastic plate of
thickness h near the origin.
(b)
 For poroelastic solid cylinder
When h/r1-N as r1-0 and h finite, the frequency Eq. (35) tends asymptotically to

J 00ða3hÞ ¼ 0, (41)

which is the frequency equation of axially symmetric shear vibrations of a poroelastic solid cylinder of
radius h. In Eq. (41), by ignoring the liquid effects, the results of purely elastic solid are obtained as a
special case considered by Gazis [1].
The frequency equation of axially symmetric vibrations of an empty poroelastic cylindrical shell for a
pervious surface (25), when k ¼ 0 is reduced to

D5D2 ¼ 0, (42)

where D2 is given in Eq. (28) and D5 is

D5 ¼

A11 A12 A13 A14

A31 A32 A33 A34

A51 A52 A53 A54

A71 A72 A73 A74

2
6664

3
7775. (43)

The elements Aij of D5 defined in Eq. (22) are evaluated for rf ¼ 0 and k ¼ 0. From Eq. (42) it is clear
that either D5 ¼ 0 or D2 ¼ 0. The case of D2 ¼ 0 is discussed in Eq. (30). The frequency
equation

D5 ¼ 0, (44)
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give the cut-off frequencies of axially symmetric vibrations of an empty poroelastic cylindrical shell for a
pervious surface. Eq. (44) corresponds to axially symmetric extensional waves, discussed by Malla Reddy
and Tajuddin [9] for a pervious surface. From Eq. (42), it can be seen that the extensional and shear waves
are uncoupled in case of axially symmetric vibrations for a pervious surface.
Similarly, the frequency equation of axially symmetric vibrations of an empty poroelastic cylindrical shell
for an impervious surface Eq. (26), when k ¼ 0 is reduced to

D6D4 ¼ 0, (45)

where D4 is given in Eq. (32) and D6 is

D6 ¼

B11 B12 B13 B14

B31 B32 B33 B34

B51 B52 B53 B54

B71 B72 B73 B74

2
6664

3
7775. (46)

The elements Bij of D6 defined in Eq. (24) are evaluated for rf ¼ 0 and k ¼ 0. From Eq. (45) it is clear
that either D6 ¼ 0 or D4 ¼ 0. The case of D4 ¼ 0 is discussed in Eq. (34). The case of

D6 ¼ 0, (47)

corresponds to axially symmetric extensional waves, discussed by Malla Reddy and Tajuddin [9], for an
impervious surface. From Eq. (45), it can be seen that the extensional and shear waves are uncoupled in
case of axially symmetric vibrations for an impervious surface.
4.3. Frequency equation for poroelastic bore

When the outer radius of the poroelastic circular cylindrical shell approaches to infinity, i.e., r2-N, the
thickness of the shell tends to infinity with finite inner radius. In this case the poroelastic shell reduce to a
circular poroelastic bore of radius r1 in an infinite poroelastic solid. Under this condition, the frequency
equation of axially symmetric vibrations of a fluid-filled poroelastic cylindrical shell for a pervious surface Eq.
(21) reduce to

jPijj ¼ 0; i; j ¼ 1; 2; 3; 4, (48)

where the elements Pij are

P11 ¼ f½ðQþ RÞd21 � ðAþQÞ�k2
þ ½�ðQþ RÞd21

þ ðPþQÞ�a21gK0ða1r1Þ �
2Na1

r1
K1ða1r1Þ,

P12 ¼ f½ðQþ RÞd22 � ðAþQÞ�k2
þ ½�ðQþ RÞd22

þ ðPþQÞ�a22gK0ða2r1Þ �
2Na2

r1
K1ða2r1Þ,

P13 ¼ �2Nika3K0ða3r1Þ �
2Nik

r1
K1ða3r1Þ; P14 ¼ o2rf J0ðaf r1Þ,

P21 ¼ �2Nika1K1ða1r1Þ; P22 ¼ �2Nika2K1ða2r1Þ,

P23 ¼ �Nðk2
þ a23ÞK1ða3r1Þ; P24 ¼ 0,
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P31 ¼ ðRd21 �QÞðk2
� a21ÞK0ða1r1Þ; P32 ¼ ðRd22 �QÞðk2

� a22ÞK0ða2r1Þ,

P33 ¼ 0; P34 ¼ 0,

P41 ¼ a1K1ða1r1Þ; P42 ¼ a2K1ða2r1Þ; P43 ¼ �ikK1ða3r1Þ; P44 ¼ af J1ðaf r1Þ. (49)

In Eq. (49), J0, J1 are Bessel functions of first kind of order zero and one; K0, K1 are modified Bessel functions
of second kind of order zero and one.

Similarly, frequency Eq. (23) when r2-N and finite r1, reduce to

jQijj ¼ 0; i; j ¼ 1; 2; 3; 4, (50)

where

Qij ¼ Pij ; i ¼ 1; 2; 4; j ¼ 1; 2; 3; 4 and

Q31 ¼ ðRd21 �QÞðk2a1 � a31ÞK1ða1r1Þ,

Q32 ¼ ðRd22 �QÞðk2a2 � a32ÞK1ða2r1Þ; Q43 ¼ 0; Q44 ¼ 0. (51)

Eqs. (48) and (50) are the frequency equations of axially symmetric vibrations of a fluid-filled circular
poroelastic bore for a pervious and an impervious surface, respectively.

When rf ¼ 0, the fluid-filled poroelastic bore becomes an empty poroelastic bore. Thus for rf ¼ 0, Eq. (48)
reduce to

jPijj ¼ 0; i; j ¼ 1; 2; 3, (52)

where Pij are defined in Eq. (49) for rf ¼ 0.
Similarly, frequency Eq. (50) for rf ¼ 0 reduce to

jQijj ¼ 0; i; j ¼ 1; 2; 3, (53)

where Qij are defined in Eq. (51) for rf ¼ 0.
Eqs. (52) and (53) are the frequency equations of axially symmetric vibrations of an empty poroelastic bore

for a pervious and an impervious surface, respectively.
The cut-off frequencies of fluid-filled and empty poroelastic bores for pervious and impervious surfaces are

obtained in a similar way as obtained in case of poroelastic cylindrical shells. The cut-off frequencies of
poroelastic bore, after simplification [19], are given by the equation

K 00ða3r1Þ ¼ 0. (54)

Eq. (54) is independent of nature of surface, that is, pervious or impervious and it is independent of presence
of fluid in the poroelastic bore.

5. Non-dimensionalization of frequency equation

For propagating modes in a non-dissipative medium, the wavenumber k is real. The phase velocity C is the
ratio of frequency to wavenumber, that is, C ¼ o/k. To analyze the frequency equations of axially symmetric
vibrations of fluid-filled and empty poroelastic cylindrical shells in cases of pervious and impervious surfaces,
it is convenient to introduce the following non-dimensional variables:

a1 ¼ PH�1; a2 ¼ QH�1; a3 ¼ RH�1; a4 ¼ NH�1; m11 ¼ r11r
�1; m12 ¼ r12r

�1,

~x ¼ ðV 0V
�1
1 Þ

2; ~y ¼ ðV0V�12 Þ
2; ~z ¼ ðV 0V

�1
3 Þ

2; d ¼ hL�1; m22 ¼ r22r
�1,

t ¼ rf r
�1; m ¼ Vf V�13 ; O ¼ ohC�10 ; x ¼ CV�1f ; z ¼ CC�10 ; d ¼ DL�1, (55)

where O is non-dimensional frequency, x is non-dimensional phase velocity of fluid-filled poroelastic
cylindrical shells, z is non-dimensional phase velocity of empty poroelastic cylindrical shells, H ¼ P+2Q+R,
r ¼ r11+2r12+r22, C0 and V0 are the reference velocities ðC2

0 ¼ N=r; V 2
0 ¼ H=rÞ, C [ ¼ o/k] is phase
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Table 1

Material Parameter

a1 a2 a3 a4 m11 m12 m22 x� y� z�

I 0.843 0.065 0.028 0.234 0.901 �0.001 0.101 0.999 4.763 3.851

II 0.960 0.006 0.028 0.412 0.877 0 0.123 0.913 4.347 2.129
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velocity of fluid-filled or empty poroelastic cylindrical shells, h is the thickness of the poroelastic cylindrical
shell, D is diameter of the bore and L is wavelength. Let

g ¼
r2

r1
; so that

h

r1
¼ ðg� 1Þ. (56)

6. Results and discussion

Two types of poroelastic materials are considered to carry out the computational work, one is sandstone
saturated with kerosene, say material-I [20], the other one is sandstone saturated with water, material-II [21],
whose non-dimensional physical parameters are given in Table 1.

For a given poroelastic material, frequency Eqs. (21) and (23), when non-dimensionalized using Eqs. (55)
and (56), constitute a relation between non-dimensional phase velocity x and ratio of thickness to wavelength
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d ( ¼ h/L) for fixed values of g. Different values of g, viz., 1.034, 1.286 and 3 are taken for numerical
computation. These values of g represent thin poroelastic cylindrical shell, moderately thick poroelastic
cylindrical shell and thick poroelastic cylindrical shell, respectively. The values of d lie in [0, 1]. Non-
dimensional phase velocity x is determined for different values of d and for fixed values of g, each for a
pervious and an impervious surface. For fluid-filled poroelastic cylindrical shells, the values of m and t are
taken as m ¼ 1.5 and t ¼ 0.4. The non-dimensional form of Eqs. (21), (23), (25), (26), etc., are solved
numerically to compute either the phase velocity or the frequency, following the analysis of Gazis [2].

The phase velocity of axially symmetric vibrations of fluid-filled and empty poroelastic cylindrical shells is
presented in Figs. 1–3 for material-I each for a pervious and an impervious surface. Fig. 1 shows the phase
velocity of fluid-filled and empty thin poroelastic cylindrical shells. From Fig. 1 it is clear that the phase
velocity of a fluid-filled shell for an impervious surface is almost same to that of a pervious surface and it is
slightly higher than that of a pervious surface in 0.7odo0.9. The variation of phase velocity for an empty
shell is similar to that of a fluid-filled shell. In general, the phase velocity of an empty poroelastic cylindrical
shell is higher than that of a fluid-filled shell. Therefore, it is inferred that the presence of fluid in the thin
poroelastic cylindrical shell decreases the phase velocity each for a pervious and an impervious surface.

The phase velocity for moderately thick shell in case of material-I is presented in Fig. 2 each for a pervious
and an impervious surface. The phase velocity of an impervious surface is higher, in general, than that of a
pervious surface for a fluid-filled poroelastic cylindrical shell. The phase velocity varies in a similar way for a
moderately thick empty poroelastic cylindrical shell. The phase velocity for an empty shell is higher than that
of a fluid-filled shell, both for pervious and impervious surfaces. Also, as the thickness of a fluid-filled shell
increase, there is a small increase in the phase velocity each for a pervious and an impervious surface. In case
of empty poroelastic cylindrical shells, the increase in thickness does not have significant effect on the phase
velocity both for pervious and impervious surfaces. Therefore, it can be inferred that the phase velocity is
affected with the increase of thickness for a fluid-filled shell but not for an empty shell.

Fig. 3 shows the phase velocity of fluid-filled and empty thick poroelastic shells in case of material-I each for
a pervious and an impervious surface. It is seen from Fig. 3 that the phase velocity of a pervious surface is
same to that of an impervious surface for a fluid-filled shell. Similar variation of phase velocity is observed for
an empty poroelastic shell. Again, in case of poroelastic thick shells, the phase velocity of empty poroelastic
shells is higher than that of fluid-filled shells. The phase velocity of a fluid-filled shell is affected by the
thickness of the shell while it does not effect an empty poroelastic shell.

The phase velocity of axially symmetric vibrations of fluid-filled and empty poroelastic cylindrical shells for
material-II is presented in Figs. 4–6 each for a pervious and an impervious surface. Fig. 4 shows the phase
velocity of poroelastic thin cylindrical shell for material-II. From Fig. 4 it is observed that the variation of
phase velocity of fluid-filled and empty shells is similar as discussed in case of material-I (Fig. 1). The phase
velocity of pervious and impervious surfaces is almost same for a fluid-filled poroelastic thin shell, in general.
This is true for empty poroelastic shells also. The phase velocity, in general, is higher for an empty poroelastic
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shell than that of a fluid-filled poroelastic shell. It is noted that the phase velocity of a fluid-filled poroelastic
thin shell in case of material-I is higher than that of material-II each for a pervious and an impervious surface.
Thus, it is inferred the presence of mass-coupling parameter increases the phase velocity. The phase velocity



ARTICLE IN PRESS
S. Ahmed Shah / Journal of Sound and Vibration 318 (2008) 389–405402
for an empty shell in case of material-I is higher than that of material-II, each for a pervious and an
impervious surface. The presence of mass-coupling parameter increases the phase velocity of empty
poroelastic thin cylindrical shells.

The variation of phase velocity for moderately thick fluid-filled and empty poroelastic cylindrical shells is
shown in Fig. 5. It is seen from Fig. 5 that the variation of phase velocity of moderately thick shell is similar to
that of poroelastic thin shell both for fluid-filled and empty shells. In general, the phase velocity is increasing
with the increase of thickness of poroelastic fluid-filled shells, while the phase velocity of empty shells remain
same. The phase velocity of fluid-filled shells in case of material-II is higher than that of material-I for
moderately thick shell each for a pervious and impervious surface. Hence, the presence of mass-coupling
parameter is reducing the phase velocity of fluid-filled poroelastic shells. For empty moderately thick shells,
the phase velocity in case of material-I is higher is higher than that of material-II. Hence for empty poroelastic
shells, the presence of mass-coupling parameter is increasing the phase velocity of moderately thick poroelastic
shells each for a pervious and an impervious surface.

Fig. 6 shows the phase velocity of fluid-filled and empty poroelastic thick shells each for a pervious and an
impervious surface in case of material-II. From Fig. 6 it is clear that the phase velocity of pervious and
impervious surfaces is almost same for fluid-filled poroelastic cylindrical thick shells. It is true for empty
poroelastic thick shells also. In general, the phase velocity in case of material-II is higher than that of material-
I in 0odo0.3 and beyond d ¼ 0.3 the phase velocity in case of material-I is higher than that of material-II
each for a pervious and an impervious surface for fluid-filled shells. The phase velocity of empty thick shell, in
case of material-I is higher than that of material-II for pervious and impervious surfaces. Hence, the presence
of mass-coupling parameter reduces the phase velocity of empty poroelastic thick shells.

The cut-off frequencies of axially symmetric vibrations of fluid-filled and empty poroelastic cylindrical shells
are presented as a function of h/r1 in Fig. 7 each for a pervious and an impervious surface, in case of material-
I. It is seen that as the thickness of a fluid-filled shell increases, the cut-off frequency increases gradually. The
cut-off frequency is same for a pervious and an impervious surface for thin and moderately thick poroelastic
shells, while the frequency for an impervious surface is higher than that of a pervious surface for poroelastic
thick shell. Moreover, the frequency of an empty poroelastic thin shell is higher than that of a fluid-filled shell
thin shell. As the thickness increases, the frequency increases for a fluid-filled shell than that of an empty shell
each for a pervious and an impervious surface.

Similar phenomenon is observed in case of cut-off frequencies of fluid-filled and empty poroelastic
cylindrical shells for material-II shown in Fig. 8. As the thickness of the shell increases, the frequency increases
each for a fluid-filled and an empty poroelastic cylindrical shell. The frequency for poroelastic thin and thick
fluid-filled shells is higher than that of frequency of moderately thick fluid-filled shell. Frequencies of empty
poroelastic shells vary in similar way. Frequency for empty poroelastic thin shell is higher than that of a fluid-
filled shell. Hence, presence of fluid in poroelastic thin shell reduces the frequency. The presence of fluid does
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not have significant effect on the frequencies of poroelastic moderately thick shells and poroelastic thick shells.
The frequency of a fluid-filled poroelastic thick shell is higher for a pervious surface in case of material-II than
that of material-I, while the frequency of an impervious surface is less in case of material-II than that of
material-I. The frequency for an empty thick shell is higher in case of material-II than that of material-I each
for a pervious and an impervious surface.

Frequency Eq. (35) is solved and the non-dimensional frequencies are determined. These frequencies are
same for pervious and impervious surfaces, fluid-filled and empty poroelastic cylindrical shells. These common
frequencies are shown in Fig. 9 for the considered materials. It is seen from Fig. 9 that the frequency increases
with the increase in the thickness of the poroelastic shell. The cut-off frequency in case of material-II is higher
than that of material-I. Here, the presence of mass-coupling parameter is reducing the frequency.

The phase velocity of axially symmetric vibrations of fluid-filled and empty bores is presented in Fig. 10
each for a pervious and an impervious surface, in case of material-I. From Fig. 10 it is seen that the phase
velocity of pervious and impervious surfaces is same for a fluid-filled bore. Similarly, the phase velocity of
pervious and impervious surfaces is same for poroelastic empty bores. The phase velocity of an empty bore is
higher than that of a fluid-filled bore each for a pervious and an impervious surface. Hence, the presence of
fluid in the poroelastic bore is reducing the phase velocity. The phase velocity of axially symmetric vibrations
of fluid-filled and empty bores is presented in Fig. 11 each for a pervious and an impervious surface, in case of
material-II. Fig. 11 shows that the variation of phase velocity in case of material-II is similar to that of
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material-I. In general, the phase velocity of a fluid-filled poroelastic bore is higher than that of an empty
poroelastic bore in case of material-II. For material-II, the presence of fluid in the poroelastic bore is
increasing the phase velocity. Hence, the presence of fluid is exhibiting a reverse phenomenon for poroelastic
bores of two considered materials. The phase velocity of axially symmetric vibrations of a fluid-filled
poroelastic bore in case of materials-I and II is almost same. Hence, the presence of mass-coupling parameter
has no significant effect on the phase velocity. The phase velocity of an empty bore in case of material-I is
higher than that of material-II. Thus, the presence of mass-coupling parameter is increasing the phase velocity
of an empty poroelastic bore.
7. Concluding remarks

The study of axially symmetric vibrations of fluid-filled and empty poroelastic cylindrical shells of infinite
extent has lead to following conclusions:
(i)
 The frequency equation of axially symmetric shear vibrations is independent of nature of surface and
presence of fluid in the poroelastic cylindrical shell.
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(ii)
 Thickness has no significant effect on the phase velocity of fluid-filled poroelastic shells.

(iii)
 In general, the phase velocity of an empty poroelastic cylindrical shell is higher than that of a fluid-filled

poroelastic cylindrical shell.

(iv)
 The phase velocity of pervious and impervious surfaces is same for poroelastic bore, each for material-I

and material-II.

(v)
 The phase velocity of an empty bore is higher than that of a fluid-filled poroelastic bore in case of

material-I.

(vi)
 The phase velocity of a fluid-filled bore is higher than that of an empty poroelastic bore in case of

material-II.

(vii)
 The absence of mass-coupling parameter increases the phase velocity in a fluid-filled poroelastic bore.
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